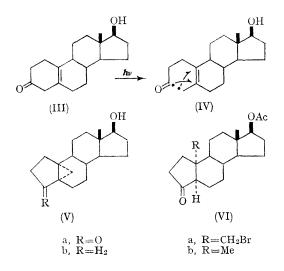

The Photochemical Synthesis of A-Nor-5a,10a-steroids

By J. R. WILLIAMS* and HERMAN ZIFFER

(National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Bethesda, Maryland

20014)

The recent and growing importance of A-norsteroids has prompted us to examine whether the recently reported¹ photochemical rearrangement of the $\beta\gamma$ -unsaturated ketone (I) to the "conjugated" cyclopropyl ketone (II) could be employed in the preparation of A-nor-steroids. An investigation



of the irradiation of (+)-17 β -hydroxyœstr-5(10)en-3-one (III) has shown that this rearrangement can be used for the preparation of A-nor-steroids and furthermore that the rearrangement is stereospecific, *i.e.*, only one of the two possible cyclopropyl ketones is formed. Unexpectedly, the ring is 5α , 10α and therefore is convertible into the hitherto difficultly accessible 10α -methyl-A-norsteroids.

Irradiation[†] of a solution of (III) $[\lambda_{max} (MeOH)]$ 280—287 m μ , ϵ 34] in t-butyl alcohol yielded the photo-product (Va) with the same molecular formula[‡] as the starting material in 55% yield.§ Further spectral data [λ_{max} (MeOH) 210.5 m μ , ϵ 4600; 282 m μ , ϵ 120; and ν_{max} 3030 and 1705 cm.⁻¹] correspond closely to those reported for $(II)^{1}$ and are consistent with the structure (Va). The n.m.r. spectrum of (Va) showed no absorption upfield from δ 0.65, and absence of vinyl protons. The presence of the cyclopropane ring in (Va) was confirmed by Wolff-Kishner reduction to yield (Vb), the n.m.r. of which showed an AB quartet centred at δ 0.27 (Δv 29.5 c./sec., I = 4.5 c./sec.) due to the nonequivalent protons of the cyclopropyl methylene group. The cyclopropyl protons in (Va) are shifted downfield as a result of conjugation with the carbonyl group as noted previously in (II).¹

The cyclopropane ring of (Va) was easily opened by heating the compound under reflux with HBr in glacial acetic to yield the bromo-compound (VIa). Its n.m.r. spectrum showed an AB

quartet centred at δ 3.42 (Δv 24.0 c./sec., J =11.0 c./sec.) due to a bromomethylene group on a quaternary carbon atom, along with two singlets at δ 2.04 (3H, acetate) and δ 0.83 (3H, C-18 methyl), and an apparent triplet at δ 4.56 (1H, C-17 hydrogen). The γ -bromo-ketone (VIa) could be recyclized to (Va) by treatment with alkali, demonstrating that no rearrangement had occurred during the acid treatment. Hydrogenolysis of the bromine in (VIa), using Pd/CaCO₃, yielded the keto-acetate (VIb) whose n.m.r. spectrum showed the presence of a new methyl group on C-10 at δ 0.99 along with the C-18 methyl at δ 0.83, and acetyl at δ 2.06. The i.r. spectra of (VIa) and (VIb) (ν_{max} 1742, 1732 cm.⁻¹; and 1735 and 1727 cm.-1, respectively) confirmed the presence of the cyclopentanone system. The above results prove the presence in the photoproduct of a cyclopentanone conjugated with a cyclopropane ring, the β -carbon of which is quaternary. These results together with the similarity in the mode of formation of (II) leads directly to the structure 17β -hydroxy-5 α , 10α methylene-A-norœstran-3-one (Va) for the photoproduct. The assignment of the cyclopropane

[†] The photolysis was carried out under nitrogen with a high-pressure mercury lamp (Hanovia, 450w) using a Pyrex filter.

Satisfactory analyses were obtained for all new compounds reported. The n.m.r. spectra were determined in CDCl₃ with Me₄Si ($\delta = 0.0$ p.p.m.) as an internal standard. The i.r. spectra were determined in CHCl₃. § No trace of the 5 β ,10 β -methylene isomer was found among the side-products formed in low yields.

469

ring as α is based on the following evidence. Firstly, the assignment can be made on the basis of the optical rotatory dispersion curve (o.r.d.) of (Va). It has been shown² that the sign of the o.r.d. curve of a conjugated cyclopropyl ketone is governed by a modified octant rule in which the cyclopropane ring outweighs all other substituents. The observed large negative Cotton effect of (Va) (MeOH, Φ_{300} -15,700°, Φ_{260} + 30,500°) requires the cyclopropane ring to be α . Secondly, (VIb) (shown to be stable to alkali, *i.e.* cis-A/Bring-junction) is not identical with the known 17β -acetoxy-A-nor- 5β , 10β -androstan-3-one. The melting points of (VIb) (m.p. 114.5-115.5°) and the corresponding 17β -alcohol (m.p. $127-128\cdot5^{\circ}$) are different from those reported for 17β -acetoxy-A-nor-5 β ,10 β -androstan-3-one (m.p. 139-140°)

and the corresponding 17β -alcohol³ (m.p. 156-157°) and also the o.r.d. of (VIb) (Φ_{304} - 715°, ${oldsymbol \Phi}_{{f 264}}$ + 639°) is of opposite sign to that reported for the 5eta,10eta-steroid (Φ_{302} + 7600°, Φ_{264} -1560°),⁴ further suggesting a mirror-image relationship.

The nature of the reactive excited species has not been completely defined, although the reaction probably proceeds via α -cleavage as shown in (IV). If the irradiation is carried out in the presence of piperylene the reaction is greatly retarded, as would be expected for a triplet intermediate. When benzophenone was used as a sensitizer, (III) was rapidly destroyed and only a trace of (Va) was observed.

(Received, April 3rd, 1967; Com. 320.)

¶ The reaction was monitored by gas chromatography. A separate irradiation experiment indicated that (Va) was only slowly rearranged in the presence of the sensitizer, benzophenone.

- ¹ J. R. Williams and H. Ziffer, *Chem. Comm.*, 1967, 194. ² C. Djerassi, W. Klyne, T. Norin, G. Ohloff, and E. Klein, *Tetrahedron*, 1965, **21**, 163. ³ T. Rull and G. Ourisson, *Bull. Soc. chim. France*, 1958, 1573.
- ⁴ B. Camerino and U. Valcavi, Gazzetta, 1963, 93, 723.